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Abstract

Inlhis paper, we propose that the manipulator impact con -
trol problem be approached from a stochastic optimal con -

trol perspective. The reason is that not only is such
approach be able to model uncertainties in contact env -

ronment, force sensing, as well as manipu later dynam its,

the controllers obtained is optimally robust interms of
performance. This result is verified by analyses and simu -

lations.

1. Introduction

Today, as robot manipulators are expected to interact
more with the environment for partially constrained tasks,
the necessity of high performance collision controllers
becomies more and more significant. For manipulator colli-
sion control, it is desirable to have a controller which can
make contact fast without bouncing despite the uncer-
tainty in the location of collision surface. Furthermore, the
transient impact force and the steady state force error
should be minimized despite. the uncertainties in the envi -
ronment dynamics as well as force sensor delays. In this
paper, wc show that the controller derived based on sto-
chastic optimal control approach is optimally robust in
terms of performance for a given uncertainties. Perfor-
mance robustness implies here as how well the system can
maintain good performance under the presence of uncer-
taintics. Previous work related to manipulator impact as
wellas force control problem mainly focus on guarantee-
ing stability in the. presence of uncertainties. The perfor-
mance robustness issue is very often ignored even though
it is also an important issue. in the following, to illustrate
that stochastic optimal approach results in a controller
which is optimally robust in terms of performance, asim-
ple example problem taken from [1] will first be re-exam-
incd in detailed, In [1], a cost functional of the force error
is taken over the period when contact has been established
and the optimal approach velocity is derived for a given
environment and controller design. Extending the problem
in [1], wc alow the. controller gains to vary and the envi-
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ronment dynamics and approach velocity (due to environ-
ment location uncertainty and force sensor delay) to be
uncertain. We show that by minimizing the expectation of
the cost functional, a controller which is optimally robust
interms of performance to the uncertainties in approach
velocity and environment dynamics can be derived. Since
the approach velocity depends on the control policy used
in non-contact regime as well as the environment location
uncertainty and force sensor delay, its statistics in terms of
pdf(probability density function) cannot be known unless
we specify the control policy used in non-contact regime
and include the collision surface location uncertainty and
force sensor delay in our model. Notice also that the result
of [1] isinvalid if bouncing occurs. Therefore, thislead us
to include the non-contact regime in the dynamic model
which isjust what [2] have been ableto do. in [2], the cost
functional of the states of both contact and non-contact
regime are optimized stochastically and thus the optimal
approach velocity is obtained implicitly without having to
evaluate its pdf.

The organization of the paper is as follow. in section
2, wc review previous works relate.ci to manipulator colli-
sion control. In section 3, we describe new results which
arc obtained by extending [ 1 ] using stochastic approach.
In section 4, a more general stochastic approach as
described in [2] is discussed. in section 5, we show via
simulations, that the controller obtained in [2] is optimally
robust in terms of performance against collision surface
location uncertainty and force sensor delay. Section 6 is
the conclusion.

2. Previous Work

In the. past, many researchers have designed various
form as well asimpact controllers which guarantee stabil-
ity in the presence of uncertainties but few address the per-
formance robustness issue which is aso important if the
controller isto be implemented. Explicit force contiol (e.g.
[3], [4]) which uses force sensor had been augmented in
one way or the other to impedance controller [5] to
achieve both accurate force tracking and good tiansient




response when the environment dynamics are uncertain.
Many performance and stability analyses assuming that
the manipulator is attached to the environment were done
[6], [7]. In this approach, it was expected that a precise
knowledge of the environment is not needed because con-
tact force. is directly controlled in a closed-loop fashion.
However, this approach suffers from the following prob-
lems. [7] points out that at high gains, the impact will
exhibit instability duc to non-collocation of actuator and
sensor, unmodelled high order dynamics in both the envi-
ronment and manipulator, actuator dynamics, and the dis-
continuity of the dynamics before and after impact. To
deal with the stability and uncertainty problem, sliding
mode controller [8]1s used to achieve gppropriate position
control before contact and good force tracking after con-
tact with only the knowledge of the upper bounds of the
environment dynamic uncertainties. Similarly, [9] requires
the knowledge of the bounds of the environment uncer-
taintics and design a non-linear feedback based algorithm
combined with explicit force control during different
phases. [ 10]utilizing generalized dynamical system
(GDS) theory developed an asymptotically stable discon-
tinuous controller. Similar to the other methods, the per-
formance of the controller also depends on the bounds of
the environment uncertainties. [11] developed an adaptive
nonlinear controller within the framework of GDS. They
utilize a collision model as a feedforward signal to reduce
the impact forces during collision and a model-based
adaptive controller t0 realize good performance during all
phases of the contact tasks. However, since al of these
control schemes arc non-] inear ant]/or discontinuous
schemies, oniy stability arc proven and the performance is
hard to predict. In our opinion, stability is essential but
equally important is that the relationship between the
amount of knowledge about tile environment and the per-
formance of any controller must be established systemati-
cally before the control scheme can be used reliably. In the
following, wc shall establish the notion of optimality of
performance robustness and how it can beultilized via a
simple example.

3. Stochastic Approach 1

In[ 1], it wasobserved that the performance of alinear
controller in contact mode is directly related to the
approach velocity which isjust thc velo city of the manipu-
lator at the time of collision. This fact was observed some
timeago [1 2].in[ 1], by evaluating the. cost functiona of
the state trgjectory of a simple force and velocity feedback
systen in contact mode analytically, the optimal approach
velocity for a given controller design can be obtained anti
found to be proportional to the force. command. However,
[1] did not dealt with tile question of how to generate the
optimal approach velocity when there is uncertainty in the

collision surface location and force sensor delay. More-
over, the optimality of the approach velocity is valid only
for a particular controller and assuming tile environment
dynamics arc known a priori. How do wc design the con-
troller that is able to maintain good performance (i.e. good
force tracking and transient suppression) in the presence
of agiven uncertainties in the environment dynamics, col-
lision surface location and possibly force sensor delay? 10
answer this question, wc must first be able to predict the
performances in terms of the uncertainties involve. There-
forc, wc extend the problem in [1] to include uncertainties
inenvironment dynamics and approach velocity and allow
the controller gains to vary. “1'hen, wc minimize tile cost
functional both deterninistically and stochastically and
compare the results in terms of performance anti sensitiv-
ity to paramecter variations.

Figure 1 shows asimple model of the manipulator and
the environment during contact along with the closed-loop
block diagram on the right according to [ 1]. The manipula-
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Figure 1 Simple manipulator and
closed loop control model

tor is assumed to be arigid body while the environment is
just a spring-mass-damper system. The state space
description of the error dynamics of the block diagram in
Figurel is

7= A% M
y = C7 @
where z = z- ch (3)

Zo is the equilibrium position induced by the constant
forde command f , and y istheforceerror, f - f,. A isthe
closed-loop error E:Jiynamics of Figure 1. To reflect the per-
formance interms of the force transient, [1] defines a qua-
dratic cost functional in terms of the force error:

Y= 7 [E(cAt)’C’C(cAl)dt—
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and v,, is the approach velocity, i.c. Z (0) _ In this frame-
work, [ = O corresponds to the time of collision. According
to (4), Jis afunction of the system parameters, m, ¢, k, V.,
and the control gains k, and k,. For a given set of system
parameters, m, ¢, k and control gains, [1] obtain the ©PU -
mal Vo by minimizing]w.r.t.vo.]n faCt, if weallow the
controller gaj nsto vary, there. will be optimal control gains
k,” and k¢ as well as optimal approach velocity V. by
minimizing J w.r.t. k,, kg, and V. simultancously.

If there were uncertaintics in the collision surface
location and force sensor delay,the approach velocity
obtained in such way cannot bc implemented because it
becomes a random variable whose statistics (e.g. pdf)
depends on thc collision surface location uncertainty, force
sensor delay and the control policy used in non-contact
regime. For illustration purpose, wc shall assumec in this
section that somehow the pelf of V. had been obtained.
Suppose there arc uncertainties in the environment
dynamic parameters m, ¢, k with their pdf’s known as
well, }in (4) becomes a function of severa random vari-
ables, m, ¢, k, V. and deterministic variables k,, k.. Asa
result, to optimize the cost w.r.t. al these variables, some
measure of the random functional J is needed. Wc define
E{J}, the expectation of J, as the cost functional and
obtain optimal control gains k" and k** by minimizing
E{J} wrtk, and ks So wc have two sets of controller
designs, onc obtained deterministically and onc stochasti-
tally. In the following, we observe that the performance of
controller k,"* and k** obtained stochastically by mini-
mizing B { J} isless sensitive to variations in m, ¢, k and
‘o than k,” and k* obtained deterministically by mini-
mizing Jassuming m, c, k, V. equal to the conesponding
mean (or nominal) values. Also, wc observe that the. per-
formance of kvM and kf** is close to that of kv* and
kf*within the uncertainty region of m,c, k and V. around
their nominal values.

llc.fore we proceed, wc need to consider the con-
straints namecly actuator saturation and sensor noise. In
(4,1 is a function of m, c, k, V,, k, anti kp, where

fy 4 T :
- [ H B
- [ e ms24cs+k

cstk

Figure 2. Rearranged block diagram of Fig.1

k;k k.. wc observed that if k > €O, J->0 which
nltans tﬁat the force error convcrgclto zero infinitelly fast.

"This isimpossible because of actuator limitation and noise
in the sensor. In fact, if wc rearrange the block diagram in
Figure 1 by combining the two loops as shown in Figure 2,
it is obvious that magnitude of k, must be limited to avoid
large. loop gain which amplifies noise and cause actuator
saturation .Therefore k,, can be considered as a constant
equals to the upper bound and wc can just vary k, during
optimization. Also, when kj and k, are positive, the sys-
tem is passive and guaranteed to bc stable and thus wc
only consider positive k,, and k,, from now on.

Coming back to the illustration of the claim made ear-
lier, suppose the system parameters m, ¢, k, V. arc uni-
formly distributed with lower and upper bounds
(i - dm, in+8m) , (¢- 3¢, &43¢) , (k- 8k, k+8k),
(v-8v,v+dv). The means are thus in, gk, V..
Assume arbitrarily that the value of M, C,k, Vybel and
letk, = 1. Plotting Jvs. k,, wc obtain curve (@) in Figure 3.
Then we let the system parameter be uncertain with means
and standard deviations all equals 1 and 0.25 respectively.
Plotting K { J} vs. k,, wc obtain curve (b) in Figure 3.
From Figure 3,k,” and k,”" are found to be around 2.25
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Figure 3. Plot of Cost against control gain k,

and 3.25 respectively. Now substituting k,* and k, " back
into J and allow the system parameters to vary, the result
will be two surfaces in the system parameter hype.rspacc.
For illustration, wc show the surfaces in 3-D plots as
shown in Figure 4a-c. In each plot, wc only plot the cost
against two parameters,ic.c&vop.m&vp, andk & V. In
general, if wc increase k,, tbc surfaces such as those
shown in Figure 4a-c will be flatter (less variation in J) but
the overal height from zero increases indicating that the
controller becomes rnorc robust to system parameter vari-
ation but worse in performance.1’ bus, k,"" is more robust
to system parameter var jation but worse in performance
thank,". ‘I his is illustrated in Figure 4. Notice that the
variations of Jassociated withk,"” arc smaller than that of
k," which indicates that the controller k,"” is more robust
in terms of performance than controller k,*. Even t bough
the performance of k,"”” is somewhat worse than that of
kv*, the performance. reflected by the height of the cost
associated with k,"*  within the uncertain region (i.e.
14 0.25) around the nominal value of the paramncters is
close to that Of the k,”. This shows that by optimizing the




expectation of the cost, one is really obtaining both the

{ J at nominal ¢ and vq

Figure 4a. Comparing J vs. V. and ¢
for k* and k**
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Figure 4b. Comparing J vs.V.and m
for k* and k**

Figure 4c. Comparing J vs. V. and k
for k* and k**

optimal performance and robustness according to the
probability distribution of the uncertainties. Notice that if
wc only minimize the sensitivity deterministically by
increasing k, continuously, it only leads to alarge loop
gain which resulted with aflat surface in J but the cost will
be infinitely high. When minimizing the expectation of the
cost, wc will not overdo the sensitivity minimization but
only doing it optimally according to the pdf of the uncer-
taintics involved while maintaining good performance.
‘I"his simple example illustrates the. notion that stochastic
optimal control approach (o the manipulator impact con-
trol problem yields a controller which is optimally robust
in terms of performance for a given uncertainty. However,
the controller could not be obtain in this way because the
pdf of the approach velocity cannot be obtained without
specifying the control policy before contact, the collision
surface location uncertainty and force sensor delay. Also,
if bouncing occurs, the result obtained so far becomes
invalid. Therefore, we need to model the system dynamics
more generally so that both contact and non-contact
dynamics as well as the collision surface location uncer-
tainty and force sensor delay can be included. in such way,
there is no need to evaluate the pdf of the approach veloc-
i(y and the optima velocity can be obtained implicitly
when the optimal control policy in non-contact regime is
obtained. In [2], wc derived the so called “Jump Impact
Controller” by minimizing the expectation of the quadratic
cost functional of just such model which contains the non-
contact and contact dynamics as well as the collision sur-
face location uncertainty and force sensor delay. There-
fore, according to our observations in this section, such
design should be optimally robust in terms of perfor -
mance. In the following, wc first bricfly describe the Jump
impact controller of [2] with some dlight corrections and
then investigate its performance robustness via simula-
tions in section 5.

4. Stochastic Approach 11

According to [2], our system dynamics is described
by tbc following state space equations,

Plant: X = A,x+4 Bu, when a<0
1
= A2x4}lu-|deO, when o> 0
Observation: y =Hx
Regime indicator: o= Cx+1n

where X c]{/, y €R3, u ch .CandHare1x 7 and
3 X 7 matrices and thus the regime indicator o is a scalar
while 1 which depends on the collision surface location,
dg,is arandom variable. ‘The matrices A;, 11 and vectors C,
B; arc constant in time and the pairs | A,, ]iland
LA..}‘L) arc stabilizable and detectable tespectively.
Since wc do not have complete state measurement and
exact rep, ime indicator duc to force sensor delay, we need




to usc observers to reconstruct the states and some regime
detection logic using the force sensor measurement. Sup-
pose we design for our system an observer in the follow-
ing form:

L= A >‘(+Bu+l,1}1(x~ﬁ)+rfd

I when 0 < B

A2x+Bu+I (X-f) =+ I‘fd when 0 >
wherel.;and 1.2 arc sla%lc observer gain matrices. 0 isthe
filtered force sensor measurement and B is the threshold of
the collision detection logic. f , is a constant which repre-
sents the desired force. Define a new augmented states
7z = [)‘( ,}J where X = x — & and augment the plant and
observer ¢ynamics, then wc obtain:

Z=H({r)z4Gu+ g(r) (6)
where 1= 1, when QSOﬁOSﬂ
2, when o>0n0<B
3, when o>0n6>p
4, when a<0Nn0>p

cator, is based on the states of the observer:
= C z
Since. x and X arc connected by the observer gains Ly and
| 5, there ex ist some regime transition model that relates a
A 1-0.5exp(-0 &)

and o = [Q ‘] —-C z.. Define an estimated regime indi-
&, whit
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Figure 5. Probability curve of P(a)

and &. By making the assumption that the probability
transition model depends on & as shown in Figure S, the
probability that r jJumps:

Prob (r (6 (1) + AG) = jir (& (1)) =1,z (1)) (7
can thus be found. Intuitively speaking, this means that
when the estimated states converge to the t1 uc states, the
greater the value of &, the more probable a is greater
than zero. To meet the requirernents of manipulator impact
control problem, we define the problem as to finding an
admissible control that minimizes the expected value of a
line.ar quadratjc loss function,

¢

f A
J=Fk {J. (z'Qz -t u'Ru)dt]ZO, to, ro}

‘0
subjected to (6), (7) where T = (&, O) . Using stochastic
maximum principle, wc obtained an infinite-tilnc subopti-
mal solution:

- n &<
(R4 1)¢b+va¢aJ when 600 ~g<p

)

1., ’ & N
3R B [(1'2“ by 6,4 V0] when &>00<p
-5k B’[(P3i 4 b3)¢b +V6,] when 00> B

1,10 (o o N .

-3K B [(}474 # by 0, + Vi ] when 6>0n 0>
where ¢, = P(0<0), ¢, = P(0>0)

P, satisfy some Riccatti equations, (for example)

I’IA]+A1 1’1 2PIBR }l p +2Q1+0CV A2=; (e

hi depends on P}, thc system parameters and f .V’s sat-
isfy the constraints:

ap =0

va

A2 Vb =

5. Performance Robustness of Stochastic
Approach 11

In this section, by examining the JIC design via simu-
lations, we verify that JIC is optimally robust in terms of
performance to the given statistics of the collision surface
location uncertainty. Also, wc show that there is atrade. -
ofl between performance and robustness when there arc
uncertainties in the dynamic model. As will be shown
from the simulation results, the JIC can be designed to
give excellent performance but very sensitive to uncertain-
tics in dynamic modeling error, noise, sampling effect and
collision surface location uncertainty. On the other hand,
JIC can aso be design to be quite robust to all these uncer-
tainties but have to give up good performance in accord
with the results of section 3. The parameters used in the
simulation arc. obtained from the experimental datain [13]

We first investigate the robustness and performance
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Figure 6. Performances when dg varies
given o= le-4

of JIC against collision surface location uncertainty. In the




following simulations, we. assume that there is no model-
ling errors and d() is normally distributed with zero mean.
First, we let the 3-sigma vaue of d,= 0.001 m which
makes ¢ = 1 c-4 (one can derive the relafionship between
the 3-sigma value of d., and design parameter ¢ which
will not be shown here due to space limitation). This
means that wc are very sure about the collision surface
location (accurate to = 1 mm). Then we vary do from -
0.01 m to + 0.01 m as shown in Figure 6. From the results,
wc can scc that the performance is pretty much the same
when do is within®1 mm i.e. curves b, ¢, and d. Outside
thisrange, the performance worsen as indicated in curve a
and c. Next wc change the 3-sigina value of d to 0.01 m
which makes ¢ =1e-5. Then we vary do from -0.03 m to
+0.03 m as shown in Figure 7. Again, from the results, wc
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Figure 7 Performances when do varies given ¢:

observe that when d, is within the range of the given pdf
which corresponds to a certain design value of ¢, then the
performance is robust to the collision surface uncertainty
i.e. curves b, ¢, and d. When do is outside this range, the
performance deteriorate, i.e. curves a and c. This verifies
that the JIC is optimally robust to collision surface loca-
tionuncertainty for a give pdf of do.

If there is no uncertainties, the JIC can be designed to
give good performances by increasing the magnitude of Q
as shown in Figure 8. The magnitude of Q for curve aand
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Figure 8 Performances w/o uncertainties w.r.t Q

b arcland le5 respectively. It is clear that when the mag-
nitude of Q is large, the performance is better. However,
the trade off for good performance is poor robustness. In
1igure 9 and 10, we compare tbc robustness of the two
designs of Figure 8 inthe presence of dynamic modelling

errors and sampling effect.in Figure 9, when the magni-
tude of Q is large, and in the presence of uncertainties in
the environment stiffness and collision surface, location
(environment 4 times stiffer than expected and dg = 0.005
m), the manipulator keeps bouncing without being able to
maintain contact, However, when Q issmall, contact is
maintain even though the performance is somewhat
degraded. InFigure 10, the sampling frequency in the
observer is 91 Hz instead of continuous. When the magni-
tudc of Q islarge, the performance is sensitive to sampling
effect. When the magnitude of Q is small, the performance
is more robust to sampling effects. From these simulation
results, it clearly shows that the design with larger magni-
tudc of Q is less robust to that of small Q similar to the
effects of k, in section 3. Finally, in Figure 11, wc show a
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Figure 9 Uncertain environment stiffness
(do =0.005 m, k,, = 5e4 instead of 1.3e4)
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Figure 10 Sampling effect in observer
(91 Hz, do= 0.001 m)
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Figure 11. Performance w/ all kinds of
uncertainties
sim ulation run with uncertainties in environment stiffness
and collision surface location, sampling effects, input
uncerlainty, Sensor noise and initial estimates error. We




design the JIC in such a way that it gives good perfor-
mance while robust to the uncertainties. Therefore, it is
possible to adjust both ¢ and Q to obtain the require per-
formance and robustness.

6. Conclusion

in this paper, we. dealt with the performance robust-
ness issue for the manipulator impact control problem. We
have shown that stochastic optimal control approach
yields a controller optimally robust in terms of perfor-
mance according to the statistics of the uncertainties. This
ideais first illustrated using a simple model assuming con-
tact mode. We observed by example that the controller
obtained by minimizing the expectation of a cost func-
tional of the force error ismore robust in terms of perfor-
mance againgt the variations of dynamic parameters and
approach velocity than that obtained by minimizing the
cost functional deterministically using the nominal vaue
of system parameters and approach velocity. Even though
the performance using the stochastic approach is some-
what degraded, it is about the same as that of the determin-
istic approach around the nominal value of the system
parameters within the uncertainty range. However, this
stochastic approach using just the contact mode dynamics
does not yield an implementable control strategy because
the pdf of the approach velocity depends on the control
policy in non-contact mode as well as the collision surface
location uncertainty and force sensor delay. Therefore,
both non-contact and contact dynamics as well as collision
surface location uncertainty and force sensor delay need to
be included in the model before optimization is carried
out. We show that [2] have done just that. As a result,
using the approach of [2], we no longer need to evauate
the optimal approach velocity asiit is implicitly implied in
the optimal control policy in non-contact mode and an
implementable controller derived from stochastic optimal
contt 01 approach can be obtained. Through simulations,
wc have shown that the controller is optimally robust in
terms of performance against the collision surface location
uncertainty and force sensor delay. Also, the performance
and robustness of the controller against environment
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